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Fig. 1. Given an input mesh of a vehicle, our method automatically creates game-ready physics-based vehicle

rigs, such as the pickup pictured here. The axes in the image represent the local hinge of each wheel. We add

white strips to the wheels to make their rotation easier to see in the supplemental video.

We extend the concept of traditional rigging, which links polygonal meshes to an underlying skeleton for 3D

characters, to the creation of physics-based wheeled vehicle models directly from surface geometry. Unlike

character rigging, physics-based rigging involves assigning joints and collision proxies to animate the surface

geometry. We present an automated pipeline that transforms a polygon soup into a physics-based, multi-

wheeled vehicle model. The pipeline begins by using text-driven 2D image segmentation to identify vehicle

components, which are then mapped onto the 3D mesh. A rough estimate of collision geometries and joint

parameters is then used to initialize a rigid body simulation of the vehicle. Then, a numerical optimization

refines these parameters in order to produce more realistic vehicle behaviour. The final result is a functioning

physics-based vehicle for real-time simulations, which is demonstrated across a variety of vehicles, including

cars, tricycles, lunar rovers, and even a semi-truck with 10 wheels.
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1 Introduction
The process of rigging associates the geometry of a polygonal mesh or implicit surface with an

underlying articulation. While typically carried out on a 3D character, such as a humanoid or

animal, where there is a clear underlying skeletal structure controlling the coarse movement and

deformation of the fine-scale surface geometry, e.g., by linear blend skinning, animation of the

surface geometry may also be driven by a physics-based model, such as rigid body simulation. In

this context, physics-based rigging requires assigning a set of joints and bodies to animate the

surface geometry.

We are specifically motivated by the need for solutions to create physics-based vehicle models,

such as cars, when starting only from a 3D polygon mesh of a vehicle. The traditional process

for physics-based rigging is to first segment the mesh for each component of the vehicle, e.g., the

chassis and wheels. Then, a collision geometry is generated for each component that approximates

the shape of the surface mesh, before mass and inertia properties are assigned. Joints are also used

to attach each component to the main vehicle body (chassis). A process of iteratively resizing the

collision geometry and tuning joint position and orientation is repeated until the behaviour of

the vehicle is deemed to be satisfactory. The overall process is tedious and furthermore requires

domain expertise. An automatic pipeline would enable both novice and experienced users to create

physics-based vehicle models.

We address the issues of extensive manual tuning and requiring expert knowledge by proposing

Rig My Ride, a two-stage process for automatically rigging physics-based vehicles. In the first stage,

a text-driven 2D image segmentation is performed on the 3D surface geometry of the vehicle mesh

rendered from multiple viewpoints. This allows individual components to be identified across

multiple viewpoint renderings of the vehicle, which are used to segment the 3D mesh. A set of

collision proxies is then estimated based on the geometry of the original mesh and the segmentation

from the previous step. Furthermore, joints that couple the motion of wheels and the chassis are

also estimated. Rather than iterating tediously to tune collision geometry and joint placement, the

second stage of our pipeline uses a numerical optimization to refine the physics parameters of the

vehicle. This is done by crafting objective functions that measure the quality of vehicle behaviour,

which is evaluated using simulation roll-outs. The final result is obtained within minutes, giving a

physics-based vehicle model suitable for real-time applications.

Our contribution can be summarized as a pipeline for automatically generating physics-based

vehicle models that requires only an input polygonal mesh. Our approach only assumes that the

up direction is known, and that the user-provided polygon surface mesh has wheels that can be

reasonably approximated by a cylinder. No other properties, such as topological and geometric

validity, are guaranteed in the 3D models. Figure 2 shows an overview of our system and a preview

of our results.

2 Related Work
In this section, we cover related work on automatic rigging and skinning methods developed by

the graphics community. Additionally, since our pipeline can be viewed as solving a computational

design problem, we cover work on interactive and optimization driven algorithms for design of

articulated linkages and mechanical assemblies. However, we begin by briefly presenting some of
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the recent work on automatic segmentation of 3D objects using computer vision and foundational

AI models, since the first phase of our pipeline segments the surface mesh of a 3D vehicle.

2.1 Part-based Segmentation
Part-based segmentation of 3D geometry has long been of interest for computer graphics researchers,

and a number of approaches have been proposed based on multi-objective optimization [Simari

et al. 2009], convex shape analysis [Kaick et al. 2015], and data-driven methods [Xu et al. 2016].

The survey by Rodrigues et al. [Rodrigues et al. 2018] provides an excellent summary of earlier

approaches.

Recently, deep learning based approaches have proven to be successful in their ability to segment

and label regions of a 3D mesh. There are two general approaches here: i) segmentation directly

using features of the 3D model, ii) rendering the 3D model from multiple viewpoints and using a

robust 2D image-based segmentation technique to segment regions of each rendered image. With

the former class of approaches, it is common to use a point cloud generated from the surface

geometry as the input. Wang et al. [Wang et al. 2020] proposed a few-shot approach that adapts a

segmentation retrieved from template objects contained in a labeled point cloud dataset. Sharp

et al. [Sharp et al. 2022] proposed to use network layers based on a simple diffusion operator and

showed that they are effective for learning tasks involving surface geometry. Their DiffusionNet

architecture is somewhat agnostic to the geometric representation, accepting polygonal elements

and points as input. However, success in segmentation is demonstrated only for a limited class of

objects with 3D meshes that are well-suited for diffusion. Our pipeline does not make assumptions

about the quality of the provided mesh, assuming only that we have a polygon soup representing a

vehicle. Other researchers have found that training networks for performing splitting, merging,

and fixing operations helps generalize to out-of-distribution examples [Jones et al. 2022].

Related to the problem of segmentation of 3D models is determining the articulation between

individual parts. Self-supervised [Liu et al. 2023a] and unsupervised [Xu et al. 2022a] methods have

shown promise on this task, although they require an existing segmentation. Temporal sequences

of part motions may also be required as input [Xu et al. 2022a; Yan et al. 2019; Yi et al. 2018]. Other

approaches find kinematic hierarchies [Abdul-Rashid et al. 2021]. Our pipeline does not assume

that either a part-based segmentation or an articulation are provided. We instead optimize for a

vehicle model with revolute joints and an arbitrary number of wheels.

Accurate data-driven segmentation requires large, high-quality datasets of surface geometry and

labeled components, and some work has focused on developing framework to facilitate the tedious

labeling process [Yi et al. 2016]. While databases of high-quality segmented 3D models exist, they

are often limited to a small number of exemplars per class of object and thus do not perform well

on geometry for out-of-distribution examples. However, databases of segmented and annotated 2D

images are much more common, and often contain orders of magnitude more training samples

compared to their 3D counterparts. This has lead to the development of powerful foundational

models for performing automatic segmentation of 2D images in the wild [Kirillov et al. 2023; Li

et al. 2022; Lüddecke and Ecker 2022]. A growing number of methods exploit the capabilities of text-

driven image foundation models to automatically perform part-level segmentation of 3D objects.

The general approach here is to extract segmentation labels of multi-view rendered images of the

object using pre-trained image-language models. Segmentation labels are then mapped back to a

point cloud [Liu et al. 2023c; Zhou et al. 2024, 2023] or polygonal mesh [Abdelreheem et al. 2023]

representation. Many authors note that it is not trivial to map 2D segmentation to 3D elements,

and work continues to address the problem of resolving multi-view label consistency [Thai et al.

2024]. Our segmentation algorithm uses an approach similar to that of PartSLIP [Liu et al. 2023c],

where vehicle models are rendered from multiple viewpoints, enabling GLIP [Li et al. 2022] to
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identify vehicle components in each rendered view. The Segment Anything Model (SAM) [Kirillov

et al. 2023] is then used to perform pixel level segmentation in these regions. More details can be

found in Section 3.1. The use of these two models for rigging can be seen in Articulate AnyMesh

[Qiu et al. 2025], which was developed concurrently to our own work and leverages the power

of 2D segmentation techniques to create a variety of joints on a wide array of objects. However,

they apply a generalized diffusion step to improve their segments, while we use a physics-based

optimizer.

2.2 Automatic Rigging
The process of rigging typically involves associating the geometry of a polygonal mesh with

degrees of freedom of an underlying articulated structure, i.e., a skeleton. Assigning which regions of

geometry are associated with the different parts of the articulated structure can be a tedious and time

consuming process. Numerous methods have been developed to reduce the time required for rigging.

The Pinnochio system [Baran and Popović 2007] computes rigging weights and a base skeleton

using a medial surface and provided skeleton. RigNet [Xu et al. 2020] automatically computes

the underlying skeleton in addition to estimating weights. A medial axis type of representation

is computed and used as input to their method, but offers little control of the specific template

used for rigging. MoRig [Xu et al. 2022b] allows the user to specify the target skeleton, although

requires exemplar motion sequences in the form of point clouds. Other work has similarly inferred

rig parameters from mesh animation sequences [Le and Deng 2014], however this requirement

does not apply to our target use case.

2.3 Computational Design of Mechanical Assemblies
Developing computational methods for designing articulated linkages and mechanical assemblies

has been of interest in the graphics community for a number of years. Many previous approaches

have focused on enabling non-expert users to create complex animated linkages [Coros et al.

2013; Thomaszewski et al. 2014], compliant mechanisms [Megaro et al. 2017b; Zhang et al. 2021],

robotic and animated characters [Geilinger et al. 2018; Maloisel et al. 2023; Megaro et al. 2015a],

cable-driven linkages [Li et al. 2017; Megaro et al. 2017a] and fabricable machines [Bächer et al.

2014; Megaro et al. 2015b]. Some researchers have noted that the parameter spaces of mechanical

assemblies can be highly non-linear, thus requiring robust numerical methods. This is especially

true in our application, since ground-wheel contact and optimization of the collision geometry gives

a discontinuous and noisy error landscape. We therefore use a stochastic gradient-free optimization

method [Hansen and Ostermeier 1996] to refine the rig parameters of our vehicle models.

3 Methodology
For the following sections, let us define our model M with axis-aligned bounding box defined by

𝑥min, 𝑥max, 𝑦min, 𝑦max, 𝑧min, 𝑧max with center (𝑥c, 𝑦c, 𝑧c), and assume that the positive 𝑧 direction

defines the up direction. Our final major assumption is that the default position of the wheels

would allow it to roll forward if the wheels were correctly segmented. However, we do not know

in advance the correct forward direction for the vehicle.

Our system’s pipeline, which will take as input a vehicle mesh and output a rig for its wheels,

can be seen in Figure 2. We assume little about the initial geometry, so we perform the following

pre-processing steps to bring input geometry into a consistent format. We start by triangulating

the model. We then scale it such that the largest dimension becomes unit length, which helps

us place the cameras to render the geometry. We finally create a 3D point cloud P with a fixed

surface density by uniformly sampling the surface of the model. Since we control the density of

the points, we can approximate the mean distance between a point and its next closest neighbour
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Fig. 2. Given an input mesh of a vehicle (left), here showing the rover model, our method automatically

produces a rigged version of the vehicle mesh (right) that we can drive in an interactive physics-based

simulation. The pipeline of our approach first uses multi-view rendering with a prompt based segmentation

to produce 2D wheel masks via GLIP and SAM. Masks are projected onto the model and clustered to identify

sets of 3D points that make up the wheels. Cylinders are fit to the point sets, and a gradient free minimization

uses physics simulation to optimize the wheel geometry and joint constraints so as to produce a functional

rig for interactive simulation.

in the point cloud,
¯𝑑 , as the square root of one over the density. In our case, we settled on a very

dense point cloud of 300,000 points per unit squared, which results in approximately 0.002 units of

length between points.

3.1 Wheel Segmentation
Finding the wheels on the model is our first challenge. Our approach is to render the model from

different viewpoints and identify which pixels in those images are the wheels. As such, we aim the

camera at the center of the mesh bounding box, and position it at the same height as the center of

the bounding box, at a distance such that a unit cube at the center of the bounding box perfectly

fits into its horizontal field of view. We then rotate the camera about the z-axis of the model to

create rendered RGB images.

For each image, we use a two step process to identify which pixels make up the wheels. We first

use GLIP [Li et al. 2022], which allows us to input our images and the prompt “wheel of a vehicle”

to obtain a set of bounding boxes for the wheels that appear in each image. We then pass each

image along with corresponding bounding boxes to SAM (segment anything) [Kirillov et al. 2023]

to obtain a set of masks which we merge together for each image. An example of such a mask can

be seen in Figure 3.

Identifying what parts of the 3D input geometry correspond to wheels becomes straightforward

given the masks produced by SAM. Since we know the position from which each image was

rendered, we cast a ray in the direction of each pixel in the mask and find the intersection with the

model geometry to compute the visible point in R3
on the surface of the model. We then find the

point in P which is closest to this visible point and flag it as being part of a wheel. Once this process

has been applied from every view, we then cluster all of the flagged points by using DBSCAN [Ester

et al. 1996], where we set the radius defining the neighbourhood of a point as
¯𝑑 defined by the

density of our point cloud. This gives us large clusters for the wheels, but can also create some

extra noise clusters which typically come from imperfections in the mask. We eliminate these extra

clusters by ignoring those that are too far away from 𝑧min. We observe that a threshold of 5
¯𝑑 works

well across all of our vehicle models.

From this process, multiple crucial hyperparameters emerge: the number of images of the vehicle

that must be rendered, the need to include different viewpoints (such as the underside of the

vehicle), the resolution of each image, the prompt that we give to GLIP, and finally the confidence
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Fig. 3. Sample output of both GLIP (left) and SAM (right), overlayed on an example input image.

Fig. 4. (Left) The bulldozer model in an example view, with wheels highlighted, and examples of the wheel

parts that are often never seen in the renders we use to find geometry that makes up the wheels. From left to

right: the inner part of the wheel near the chassis, the top of the wheel, and the bottom of the wheel.

that GLIP must reach in order to validate its bounding boxes as having fulfilled our prompt. We

have explored a variety of combinations of these hyperparameters, and our results can be viewed

in appendix A. In short, we have elected to use 10 square images 700 pixels in width, with a simple

revolution around the vehicle, and prompting GLIP with the phrase “wheel of a vehicle” while

requiring it to achieve 50% confidence in its guess. With these parameters, and with DBSCAN’s 3D

segmentation as described above, we are able to create 𝑁 point clusters that accurately reflect the

real number of wheels of each vehicle. However, these clusters only capture about 70% of the actual

area of each wheel, because some parts were not visible on any rendered image, especially any

parts that were obstructed by the chassis. We demonstrate some common missed areas in Figure 4.

Furthermore, these segments do not give us any information about the kinematic chain created

between the chassis and the wheels. Thus, we need to optimize to capture the entire wheel shape

and to find the way that the wheels connect to the chassis.

3.2 Cylinder Initialization
We choose to represent the changes to the wheel geometry by the vertices that get included or

excluded from each wheel. However, we need to transform this complex integer programming

task into a form more amenable to optimization. To this end, we use cylinders to approximate the

wheels: we then run an intersection test between each point and the cylinder in order to determine
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Fig. 5. (Left) A carriage model with slanted wheels poses an interesting challenge for vehicle rigging. (Center)

Principal component axes of the planar projection of the wheel: here we choose axis 2 as the direction of the

initial cylinder axis because axis 1 more closely matches the wheel height. (Right) The result of the cylinder

initialization process, ready for optimization.

which vertices belong to that wheel. Thus, our optimization task becomes finding the best axis,

position, radius, and length of each cylinder.

Before we can start our optimization, we must thus transform our point clouds into initial

cylinder guesses. Many cylinder fitting algorithms exist, but few address the problem of finite

(capped) cylinders, and instead assume that most input samples belong to the curved surface of

a cylinder. In contrast, our point clouds contain a lot of samples from what would be seen as

cylinder caps (e.g., hub caps of a wheel). However, since we know that the axis of the wheels will

be perpendicular, or close to perpendicular, to the up-direction (z), we can initialize them using a

heuristic approach.

As a first step, we eliminate the z-component of each point in the point cloud, in order to make

the data 2D. This will eliminate most of the noise created by the lack of data from the renders and

create a clearer projection of the curved surface. Next, we perform principal component analysis

on these points, which gives us a bounding box for the wheel which is axis-aligned in the z (up)

direction and oriented in the x and y directions. This gives us all the cylinder parameters that we

need. The diameter is given by the oriented side of the bounding box which is most similar to the

axis-aligned side, the length is determined by the remaining oriented side, the position is simply

the center of the bounding box, and the axis is represented by the principal component responsible

for the length of the cylinder. An example of a possible bounding box and the resulting cylinder

can be seen in Figure 5.

Once we obtain all the cylinders, we eliminate any cylinder that is of a significantly smaller

order of magnitude than the other ones, which removes any outliers that were not eliminated by

the clustering step.

3.3 Parameter Optimization
We want to evaluate our segmentation based on the performance of the model in a rigid body

simulation. To this end, using the base model as reference, we create 𝑁 + 1 bodies, one for each

wheel and one for all the remaining points, which will make up the chassis. Next, we create 𝑁

revolute joint constraints using the central axis of each cylinder. However, we will not be using the

cylinders as collision geometry, since they will poorly estimate the visual quality of each segment,

and we will instead use the convex hulls of the 𝑁 + 1 vertex sets. These convex hulls will also

determine the position of each joint. The issue with cylinders as collision proxies, and the solution
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(a) Initial cylinders (b) Geometry inside cylinder (c) Convex hull inside cylinder

Fig. 6. An illustration of the issue with using cylinders as a collision proxy. (a) Height-wise, the initial cylinders

appear well aligned with the correct axis of rotation. These collision proxies will lead to near-perfect rolling,

giving accurate physical behaviour. However, we observe that the wheel geometry is not fully enveloped by

the cylinder due to small perturbations of the cylinder’s center, as shown in the highlighted example. (b)

Further examination of the geometry enveloped by the cylinder reveals that the cylinder fails to capture

all the vertices we expect to be part of the wheel. As such, the good rolling behaviour is misaligned with

each wheel’s poor visual appearance. (c) The convex hull of this geometry will directly cause poor rolling

behaviour, fixing the misalignment of the cylinder proxies.

(a) A wheel with a high vertex

count, and optimized cylinder

(b) Geometry inside cylinder. (c) Geometry inside cylinder, after

dilation-erosion steps.

Fig. 7. An illustration of how convex hulls can patch over holes in geometry. In the case of this cylinder, all the

vertices near the floor were correctly captured, but some vertices on the top and side, that have little influence

on movement due to the wheel’s high vertex count, were excluded. Including some of the neighbouring

vertices was able to mitigate the issue.

offered by convex hulls, are illustrated in Figure 6. To counteract the issue of convex hulls patching

over small holes in geometry, we slightly dilate each wheel by including the neighbouring vertices

of the segment, immediately eroding it afterwards to limit the number of new vertices that we add.

An explanation of hole-patching and the fix created by dilation-erosion can be seen in Figure 7.

Finally, we will make our vehicle travel in the direction which is perpendicular to the up-direction

and the average direction of the cylinders.
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We found that the cylinder parameters could not be found with gradient based methods, since

such a simulation would not have an obvious derivative. Furthermore, in cases were small changes

in cylinder parameters lead to large changes in wheel geometry, roll-outs would frequently diverge.

For this reason, we rely on CMA-ES [Hansen and Ostermeier 1996] for our optimizer, which is

gradient-free. At each step, we initialize the rigid bodies as described above. We also set the vehicle’s

desired motion direction
ˆd by summing the axes of all the cylinders (axis flipped if it points in the

opposite direction to the running total) and calculating the cross product with the up (z) vector.

Finally, we give each wheel an initial velocity in
ˆd’s direction and let the simulation roll out as

CMA-ES evaluates a fitness function.

Gradient-free minimization will randomly sample many possible solutions. However, before

running a simulation to compute a score, we reject a given set of parameters based on three

heuristics that identify problematic situations. Specifically, we immediately reject when there is a

cylinder that is (1) initially too far from the ground, (2) not contained in the vehicle bounding box,

or (3) intersecting another cylinder. Rejection is handled by returning a very large penalty.

With the remaining samples, we run a simulation for 𝑄 frames and compute a fitness function

consisting of four parts: travel (𝑓t), compliance (𝑓c), boundary quality (𝑓b), and mean squared error

(MSE), (𝑓e). We assign weights to these terms, experimentally determined in advance, to ensure that

they properly penalize poor solutions, and likewise, to ensure that they are of similar magnitude to

one another.

Travel. We compute the total distance traveled between the start frame 1 and the end frame

𝑄 using the position p of the chassis projected onto the desired motion vector
ˆd. Since we must

minimize our objective function, we convert this distance into a penalty 𝑓t by inverting its absolute

value. If the vehicle ends up moving backwards during the simulation, the candidate is rejected;

otherwise, we assign

𝑓t =
1���(p𝑄 − p

1
) · ˆd

��� . (1)

Compliance. We compute a penalty for what we call compliance, 𝑓c, which will be a measure of

similarity between the cylinder and the convex hull of wheel 𝑗 , examined through their respective

volumes 𝑉𝐶 𝑗
and 𝑉𝐻 𝑗

. The best case would consist of the cylinder and the convex hull having an

identical volume, thus we look at how far the ratio lies from 1. Since we grow the geometry inside

each segment, there may be cases where the 𝑉𝐻 𝑗
exceeds 𝑉𝐶 𝑗

, in which case we flip the ratio,

𝑓c =
1

𝑁

𝑁∑︁
𝑗=1

1 −
min(𝑉𝐻 𝑗

,𝑉𝐶 𝑗
)

max(𝑉𝐻 𝑗
,𝑉𝐶 𝑗

) . (2)

Boundary. Even though one wheel may be made up of several disconnected components, one

connected component does not generally belong to both the wheel and the chassis. As such, if we

do split a connected component, these splits must be kept to a minimum. We define a vertex as

fringe if it has at least one neighbour that’s part of the chassis and at least one that’s part of the

wheel. We then count the number of loops that these fringe vertices create on the model:

𝑓b =
1

𝑁

𝑁∑︁
𝑗=1

(Loops on wheel 𝑗 ). (3)

MSE. Because the original cylinders we compute in Section 3.2 tend to be a high quality rep-

resentation of the wheels, we compute a mean squared error term to encourage each optimized
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Fig. 8. Left shows bounding boxes found by GLIP for parts on the “front of the vehicle”, and right shows

points on the vehicle (green) inside these boxes that we combine to compute the forward direction (blue).

This permits the straightforward addition of a steering rig to the front wheels of the vehicle.

cylinder to have a similar length 𝑙 , radius 𝑟 , and center position 𝑝 as the corresponding parameters

¯𝑙 , 𝑟 , 𝑝 , in the original cylinder. This term is a simple sum of squares for each wheel,

𝑓e =
1

𝑁

𝑁∑︁
𝑗=1

(𝑟 𝑗 − 𝑟 𝑗 )2 + ∥𝑝 𝑗 − 𝑝 𝑗 ∥2 + (𝑙 𝑗 − ¯𝑙 𝑗 )2 . (4)

Once CMA-ES runs for a fixed number of generations, we return each wheel’s updated list of

vertices, along with its final joint position.

3.4 Extension: Steering
The above sections describe a method for automatically creating a vehicle that moves forward.

However, this technique can be easily extended to include more complex motion, by adding steering

for example. To this end, we prompt GLIP for the “front of the vehicle” on each image. We do

not give these bounding boxes to SAM, and we instead directly send a ray through each of their

centers. We then find the median hit location which we use to define a front direction vector
ˆ𝑓

between it and the center of the vehicle bounding box. An example of this procedure can be found

in Figure 8. We can then flip the desired direction of motion
ˆd depending on the sign of their dot

product. Using the correctly flipped vector
ˆd, we can identify the front wheels as those furthest

along that direction, and add additional revolute joint constraints to these wheels to equip the

vehicle with a simple steering setup.

3.5 Extension: Suspension
While steering was made possible by creating new prompts, other extensions are possible by

running a supplementary optimization steps. We demonstrate this by adding a suspension system

to our vehicle. After initializing our rigid body model with the optimized chassis and wheels, we

create prismatic joints and springs with stiffness 𝑘 , damping 𝑏, and rest length 𝑙0 between the

chassis and the wheels. The vehicle is then made to drive through rough terrain for𝑄 frames with a

constant velocity while computing a fitness function with two parts: stability (𝑓s) and contact (𝑓n).
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Stability. Suspension exists to make the chassis stable, even on bumpy terrain, which translates

to minimizing the rotation of the chassis. We evaluate this by measuring two dot products, one

between the up direction at initialization ŷ and the current frame yq, the other between front

direction at initialization
ˆd and the current frame dq, in order to obtain the penalty

𝑓s =

𝑄∑︁
𝑞=1

1 − yq · ŷ + 1 − dq · ˆd. (5)

Contact. If suspension becomes too weak, the chassis can start to graze against the ground. We

counteract this tendency by summing up the largest penetration distance Δ𝑝q between the chassis

and the ground at each frame, which yields us

𝑓n =

𝑄∑︁
𝑞=1

Δ𝑝q. (6)

4 Results
We demonstrate the results of our system on a variety of vehicle models found on TurboSquid,

CGTrader, and Thingiverse (see Figure 13). When selecting the 3D models, it was important to us to

find a variety of wheel counts, topologies, and styles. In the end, our models contain between 2 and

10 wheels, can contain wheels defined by as little as 96 vertices or by as many as tens of thousands.

4.1 Implementation Details
Multi-view renderings of each 3D model are generated in Blender using a custom Python script.

For simulations, we use a custom rigid body simulator written in C++, which allows us to gain

efficiency and parallelization while performing simulation rollouts during optimization. Full source

code for our pipeline is available at https://github.com/Melissa2661/RigMyRide.

We use GLIP-L to find the bounding boxes for our experiments and SAM ViT-H to convert

the boxes into masks. We use the pre-trained weights offered in their respective papers, with no

additional training on our end. The two prompts that we used were “wheel of a vehicle” for wheel

initialization and “front of a vehicle” for steering; we attempted to prompt GLIP for the “back of a

vehicle”, but this yielded almost no bounding boxes.

For CMA-ES, we optimize for 300 generations, where each candidate runs a simulation for 300

steps to evaluate the fitness function. Each generation yielded 32 × 𝑁 candidates; we chose to take

into account the number of wheels in order to counteract the increased difficulty in optimizing the

increased number of parameters. The initialization of CMA’s covariance matrix depends on the

parameter: each cylinder’s position yields a 0.01 in the matrix, while direction, depth and radius

creates a 0.03.

4.2 Pipeline Output
Examples showing the rigs before and after optimization are shown in Figure 13. Likewise, please

see the supplementary video for simulations of the vehicles shown in the figure. A sample output

of each stage of our pipeline can be seen in Figure 2.

We report the time each major section of our pipeline takes in Table 1. Note that during 2D

segmentation, GLIP and SAM took on average 1.9 and 1.1 seconds, respectively, to analyze each

image. Unsurprisingly, optimization is the most time-consuming part of our pipeline; however, if

the vehicles have a sufficiently low face and vertex count, the process can take less than 10 minutes

total. As such, it could be interesting to restart the optimization process multiple times and pick the
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Table 1. Timing of each major section of our pipeline: the creation of the 3D point cloud, the casting of

rays from the 2D mask onto the 3D model, initialization of the cylinders, and optimization of cylinders with

CMA-ES. Unless otherwise indicated, all times are measured in seconds.

Name Face count PC creation 2D - 3D transfer Cylinder init Optimization

Bicycle 126 889 0.30 31 0.1 322 (5.4 min)

Bulldozer 18 414 0.05 16 0.8 168 (2.8 min)

Bus 25 666 0.05 23 0.2 217 (3.6 min)

Carriage 1 552 0.03 22 2.5 62 (1.0 min)

Cement mixer 8 698 0.03 24 1.0 237 (4.0 min)

Old pickup 4 824 0.03 24 1.9 144 (2.4 min)

Racecar 31 798 0.05 26 3.0 579 (9.7 min)

Rover 2 828 0.03 22 0.3 160 (2.7 min)

Scooter 41 265 0.13 25 0.1 132 (2.2 min)

Suspension 188 450 0.38 32 1.2 5078 (84 min)

Taxi 4 185 0.05 20 0.9 98 (1.6 min)

Tricycle 26 724 0.04 26 1.4 133 (2.2 min)

Truck 39 792 0.15 25 0.5 1226 (20.4 min)

best result from them, which could allow some vehicles to be better segmented. In contrast, little to

no variation in results was found in the rest of the system, so these results may be easily cached.

We report qualitative results of our segmentation in Table 2, showing the difference in segment

accuracy between the 3D segmentation step and the final output post-optimization. We created

ground-truth segmentations for 13 vehicles, and compare the total area captured by each segment

at both steps.

For the segmentation step, we can see that every wheel gets its own segment, with the exception

of very close co-axial wheels as seen in the cement mixer vehicle. However, having these wheels

fuse together has minimal impact on the accuracy of that vehicle’s motion; a much more detrimental

fusion would have been between two physically close wheels that do not share an axis, like the

ones on the truck model. Such a situation was avoided thanks to the high accuracy of the masks

returned by SAM and our dense point cloud, which recognized each wheel as a distinct entity. Even

though the number of segments is generally optimal, the information captured by each segment

generally is not, with the vehicles averaging 70.2% accuracy for the wheels.

However, once we allow the wheels segments to be optimized, the average accuracy increases to

91.1%. Furthermore, in 9 out of 13 vehicles, 100% of the wheel area was captured, and 5 out of 9

capture no area from the chassis, resulting in perfect segments. Only two vehicles suffer from the

optimization process, namely the bicycle and the scooter. Since they both only have two thin

wheels, they have trouble balancing during the physics-based simulation; as such, the optimizer

has trouble converging.

Finally, there are three vehicles that show improved, but not optimal, segments, the cement

mixer, taxi and tricycle. On the last two models, the wheels are very close to their wheel wells.

As such, the surrounding geometry gets easily pulled into the wheel segments; adding texture to

these models in order to improve the initial segmentation does not mitigate this effect. However,

since they are still able to roll, the optimizer is able to improve on the initial segments. Meanwhile,

for the cement mixer, the lack of optimality occurs due to two wheels being completely excluded
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Table 2. Comparison of our method after initial segmentation and after final optimization against ground

truth. In our context, a false positive refers to a part of the chassis that got incorrectly labeled as a wheel.

Wheel count Segmentation Optimization

Model Ground truth Created True Positive False Positive TP FP

Bicycle 2 2 77.6% 10.6% 65.7% 13.9%

Bulldozer 4 4 71.7% 0.0% 100 % 0.0%

Bus 4 4 72.4% 0.6% 100 % 0.0%

Carriage 4 4 83.3% 0.2% 100 % 0.0%

Cement mixer 10 6 74.5% 1.5% 80.2% 0.1%

Old pickup 4 4 94.0% 5.3% 100 % 1.8%

Racecar 4 4 60.7% 1.3% 100 % 3.0%

Rover 6 6 94.0% 5.2% 100 % 0.0%

Scooter 2 2 71.7% 0.2% 50.6% 1.7%

Suspension 4 4 60.0% 3.5% 100 % 2.5%

Taxi 4 4 60.6% 4.3% 100 % 2.0%

Tricycle 3 3 78.3% 14.8% 87.7% 6.5%

Truck 10 10 68.1% 0.9% 100 % 0.0%

Average 70.2% 3.3% 91.1% 2.4%

(a) Global vehicle view (b) Initial wheel segments (c) Final wheel segments

Fig. 9. Output for the frankenwagon vehicle.

from the segments; as they were disconnected components, the optimizer was able to find a good

enough solution without including them.

4.3 Special Case: Asymmetric Wheels
As a stress test, we demonstrate how our pipeline handles a vehicle with highly asymmetric wheels,

the frankenwagon model. Such a vehicle would not be possible to rig with a closed-form equation

for the wheels. The result can be seen in Figure 9.

4.4 Steering
Our technique for identifying the front of the vehicle works well when the vehicle’s shape creates

no ambiguity. However, some vehicle topology does make it hard to differentiate between front

and back, which leads to GLIP identifying the back of the vehicle as its front. Since this step only

changes the sign of the desired direction of motion, such errors can be easily undone by the user in

one key press.
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Fig. 10. Final pose of some pickups after driving through rough terrain for 430 frames. From left to right:

vehicle with no suspension, one with suspension initialized to maximal stiffness/damping; one with optimized

suspension. The red strips on the ground align with the chassis’ position on the first frame.

4.5 Suspension
In the extended example, the vehicle suspensionwas optimized 150 iterations, where each generation

created 10 candidates and each candidate ran the simulation for 300 steps. Furthermore, to reduce

the large difference in magnitude between the rest length and the stiffness and damping parameters,

we instead optimize for 𝑘e and 𝑏e, such that the spring’s stiffness and damping are 10
𝑘e

and 10
𝑏e

respectively. The coefficients 𝑘e and 𝑏e are bounded to the range [0.0, 9.0], while the rest length is

bounded to between 0 and the diameter of the wheel. The performance of the resulting suspension

is demonstrated in Figure 10.

4.6 Ablation of Fitness Function
We conduct an ablation study to demonstrate the necessity of each penalty. The qualitative results

can be seen in Figures 11. We omit mean squared error from the ablation study as it only affects the

convergence of the optimizer, with little effect on the quality of the segments. We see that distance

and compliance help ensure that all the wheels contribute to forward motion, since the lack of

these penalties leads to vehicles where some of the wheels may not even touch the ground, while

the border penalty prevents holes in the wheel geometry.

5 Limitations and Future Work
One limitation of our work is related to the assumption that wheels can be approximated into

cylinders. Even though this is very often the case, the assumption does not hold for spherical wheels

and provides a sub-optimal approximation of the smooth curves of a tire. A more general alternative

here may be to use superquadrics instead of cylinders for the collision geometry optimization. Even

though there has been recent work with segmenting meshes into superquadrics [Liu et al. 2023b;

Wu et al. 2022] and even segmentation using SAM [Liu et al. 2024], our preliminary investigations

on incorporating quadric optimization into our pipeline yielded unsatisfactory segments.

Our system is also unable to recognize additional components that may require articulation due

to motion of the wheels. This is most evident in the case of the tricycle: its pedals should be put

into motion by the rotation of the front wheel, but that is not the case. However, as can be seen in

Figure 12, this presents its own topological challenges that cannot be solved with the help of GLIP

or SAM, at least not in their current state.

Finally, since the optimizer evaluates physics parameters by rolling the vehicle forward, some

vehicles may have trouble staying upright and thus perform poorly even if their collision geometry

and joint axes are good. This is mainly a disadvantage for bicycles, but not all two-wheeled vehicles

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 48. Publication date: August 2025.



Rig My Ride 48:15

(a) No distance (b) No compliance (c) No border

Fig. 11. Comparison between the states of the simulation after 300 steps, where selected penalties are omitted

from the optimization, on the truck model. With all penalties active, our optimization process returns perfect

segments.

Fig. 12. The pedals of the tricycle do not spin along with the wheel in our result, but they are likewise

far from the wheel. Any heuristic using geodesics would erroneously pull the fork of the tricycle into the

segment before reaching the pedals.

suffer from this. The steamroller, for example, has no issues staying upright and is thus rigged

properly (see Figure 13). We did not find a satisfactory way to mitigate this issue for bicycles.

One area that should be explored further includes finding better ways of fighting convex hull

hole patching on models with high vertex counts. One fix might be to create a simplified version

of the vehicle using isotropic remeshing, running the inside-outside test on cylinders using that

simplified model, then transferring this information back on the full model to create the convex

hulls. However, since our work focuses on vehicles used in games, which tend to be low-poly, we

did not explore this idea in depth.
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Fig. 13. Input meshes, initial wheels (red), and final wheels (blue) for a wide collection of vehicles processed by

our pipeline. Notice how the initial revolute axes (yellow arrows) and wheel collision geometries are improved

by the optimization stage of our pipeline. The last 8 vehicles, starting with the bicycle, are cases where the

final geometry is not optimal.

6 Conclusions
The Rig My Ride system proposes a way to use the strengths of prompt-driven 2D image segmenta-

tions and applies them not only to 3D segmentation tasks, but also to physics-based animation.

We also leverage numerical optimization with simulation-in-the-loop to refine rig parameters and

produce physical behaviour that is consistent with the input geometry. Our system is able to create
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rigs of vehicles without any human input, which not only allows the user to skip this tedious step,

but also makes it possible to rig large databases of vehicles without any supervision and without

knowledge about the number of wheels or the topology of the vehicle mesh. Rig My Ride can

also be enhanced for even richer motion by adding a suspension system through a supplementary

optimization step. Furthermore, if the vehicle presents enough characteristics to distinguish its

front from its back, it can automatically determine the appropriate steering axes.

Incorporating other geometries as part of the optimization stage is also interesting future work.

For instance, once superquadric segmentation becomes more advanced, our technique could be eas-

ily expanded to adapt to more general convex geometry, which creates the opportunity to articulate

more complex mechanisms like crane arms. Such segmentations, paired with a soft body simulation,

could also be used to rig vehicles with treads. With minor tweaks to the optimization function,

our simulation-based verification technique could also be used in combination with generative

techniques, e.g., Articulate AnyMesh [Qiu et al. 2025], in order to reduce interpenetrations and

holes, leading to more realistic results.
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A 3D Segmentation Hyperparameters
In Tables 3 through 8, we compile a comprehensive comparison of the different hyper-parameters

that can be chosen when obtaining the 2D segmentations. We considered 4 parameters: the number

of images that we were to pass to GLIP and SAM; the resolution of each image; the confidence

cutoff for GLIP to accept the bounding box that it found; and the type of prompt that we input to

GLIP, where Word stands for the prompt “wheel” while Phrase refers to the prompt “wheel of a

vehicle”. We obtained these results for 15 different vehicles of varying topology and vertex count,

and compared them to a ground truth segmentation. The first two columns of data relate to the

area that was labeled as a wheel due to the image segmentation: we find that at most 83% of the

surface area that makes up a wheel is correctly identified, and this is only achieved in the cases

where a large amount of images are captured. However, these same hyperparameter configurations

also tend to misidentify a larger surface area of the chassis as a wheel, and as such are undesirable.

This clearly demonstrates the need to optimize the size and shape of the segments to capture the

missing data. The last two columns report how many wheel segments were created by DBSCAN.

Although none of the configurations were able to create the exact number of segments required, we

found that in all cases where exactly one vehicle obtained less wheels than expected, it was in the

case of the cement mixer; it has 4 pairs of co-axial wheels that are very close together, and thus

DBSCAN creates 4 segments for them instead of 8. Although this is still a failure case, this is less

serious than non-coaxial wheels being joined as one, showing that this can be a good technique for

separating the 3D hit points that we obtain from the image segmentations.

The data is split between six tables due to its volume, but it should be considered as one unit.

Across the tables, we follow the convention that a darker colour is equivalent to a more desirable

result. The parameter combination that we end up using for the paper can be found emphasized in

Table 4.
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Table 3. Evaluation of the accuracy of 3D segmentation using the image segmentation projected on the

models, across a variety of hyperparameters. Here, 4 images are used.

Hyperparameters Area Captured Number of wheels created

Image res Cutoff Prompt type True Positive False Positive Same as GT More than GT

350 px 50% Word 38.3% 1.0% 53.3% 40.0%

Phrase 37.8% 1.0% 66.7% 26.7%

60% Word 35.5% 1.0% 60.0% 26.7%

Phrase 35.7% 1.0% 60.0% 26.7%

75% Word 19.5% 0.8% 13.3% 20.0%

Phrase 22.3% 0.6% 40.0% 20.0%

700 px 50% Word 53.6% 1.7% 73.3% 20.0%

Phrase 53.2% 1.4% 80.0% 13.3%

60% Word 47.9% 1.2% 86.7% 6.7%

Phrase 49.1% 1.3% 80.0% 6.7%

75% Word 25.8% 0.7% 26.7% 13.3%

Phrase 26.2% 0.6% 20.0% 20.0%

1080 px 50% Word 57.3% 1.5% 73.3% 26.7%

Phrase 56.4% 1.4% 73.3% 26.7%

60% Word 53.2% 1.4% 60.0% 33.3%

Phrase 52.0% 1.2% 46.7% 46.7%

75% Word 24.0% 0.9% 33.3% 6.7%

Phrase 12.2% 0.0% 26.7% 0.0%

Table 4. Results when 10 images are used.

Hyperparameters Area Captured Number of wheels created

Image res Cutoff Prompt type True Positive False Positive Same as GT More than GT

350 px 50% Word 61.1% 3.2% 80.0% 13.3%

Phrase 61.1% 2.7% 86.7% 6.7%

60% Word 58.9% 2.5% 86.7% 6.7%

Phrase 59.4% 2.5% 93.3% 0.0%

75% Word 37.7% 1.6% 60.0% 13.3%

Phrase 43.7% 1.8% 73.3% 6.7%

700 px 50% Word 70.3% 3.4% 86.7% 6.7%

Phrase 70.2% 3.3% 93.3% 0.0%

60% Word 69.2% 3.1% 93.3% 0.0%

Phrase 69.4% 3.1% 93.3% 0.0%

75% Word 47.9% 2.0% 73.3% 0.0%

Phrase 48.7% 1.8% 80.0% 0.0%

1080 px 50% Word 72.6% 3.5% 73.3% 13.3%

Phrase 72.3% 3.2% 80.0% 6.7%

60% Word 71.7% 2.9% 86.7% 6.7%

Phrase 71.3% 3.0% 86.7% 6.7%

75% Word 41.3% 2.0% 60.0% 6.7%

Phrase 35.2% 1.3% 60.0% 6.7%
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Table 5. Results when 16 images are used.

Hyperparameters Area Captured Number of wheels created

Image res Cutoff Prompt type True Positive False Positive Same as GT More than GT

350 px 50% Word 65.3% 4.2% 86.7% 6.7%

Phrase 65.5% 3.9% 80.0% 6.7%

60% Word 63.5% 3.5% 86.7% 6.7%

Phrase 64.0% 3.4% 93.3% 0.0%

75% Word 43.1% 2.1% 66.7% 6.7%

Phrase 46.7% 2.3% 66.7% 0.0%

700 px 50% Word 73.3% 4.0% 80.0% 6.7%

Phrase 73.2% 3.7% 80.0% 6.7%

60% Word 71.9% 3.3% 80.0% 6.7%

Phrase 72.2% 3.2% 86.7% 0.0%

75% Word 50.7% 2.2% 73.3% 0.0%

Phrase 55.4% 1.9% 86.7% 0.0%

1080 px 50% Word 75.3% 4.1% 73.3% 6.7%

Phrase 75.1% 4.0% 80.0% 6.7%

60% Word 74.0% 3.6% 73.3% 6.7%

Phrase 74.0% 3.3% 80.0% 6.7%

75% Word 46.0% 1.9% 80.0% 0.0%

Phrase 38.4% 1.3% 66.7% 0.0%

Table 6. Evaluation of the accuracy of 3D segmentation using the image segmentation projected on the

models, across a variety of hyperparameters, where half of the images were taken with a view of the vehicles

from underneath, and half were taken with the standard view. Here, 8 images are used.

Hyperparameters Area Captured Number of wheels created

Image res Cutoff Prompt type True Positive False Positive Same as GT More than GT

350 px 50% Word 57.0% 2.4% 86.7% 13.3%

Phrase 57.3% 1.9% 86.7% 13.3%

60% Word 50.8% 1.8% 60.0% 26.7%

Phrase 54.5% 1.8% 80.0% 20.0%

75% Word 27.0% 1.3% 13.3% 33.3%

Phrase 33.4% 1.1% 33.3% 40.0%

700 px 50% Word 69.3% 2.7% 86.7% 6.7%

Phrase 69.3% 2.0% 93.3% 0.0%

60% Word 65.8% 1.8% 93.3% 0.0%

Phrase 66.3% 1.9% 93.3% 0.0%

75% Word 37.5% 0.9% 53.3% 6.7%

Phrase 37.6% 0.8% 53.3% 0.0%

1080 px 50% Word 72.5% 3.3% 86.7% 6.7%

Phrase 71.9% 2.8% 93.3% 0.0%

60% Word 68.3% 2.7% 86.7% 0.0%

Phrase 68.6% 2.3% 86.7% 6.7%

75% Word 32.3% 1.2% 46.7% 6.7%

Phrase 22.0% 0.4% 26.7% 13.3%
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Table 7. Results when 20 images are used

Hyperparameters Area Captured Number of wheels created

Image res Cutoff Prompt type True Positive False Positive Same as GT More than GT

350 px 50% Word 74.1% 5.5% 80.0% 6.7%

Phrase 74.2% 4.8% 80.0% 6.7%

60% Word 72.3% 4.3% 93.3% 0.0%

Phrase 73.1% 4.4% 93.3% 0.0%

75% Word 51.0% 3.1% 66.7% 6.7%

Phrase 57.7% 3.3% 80.0% 0.0%

700 px 50% Word 80.6% 6.4% 73.3% 13.3%

Phrase 80.5% 6.2% 73.3% 13.3%

60% Word 80.1% 5.4% 80.0% 6.7%

Phrase 80.1% 5.7% 80.0% 6.7%

75% Word 57.1% 3.6% 73.3% 6.7%

Phrase 62.1% 3.9% 66.7% 13.3%

1080 px 50% Word 82.1% 7.8% 73.3% 13.3%

Phrase 82.0% 7.0% 73.3% 13.3%

60% Word 81.5% 6.5% 73.3% 13.3%

Phrase 81.2% 6.6% 73.3% 13.3%

75% Word 51.1% 3.0% 66.7% 13.3%

Phrase 44.6% 2.3% 60.0% 13.3%

Table 8. Results when 32 images are used

Hyperparameters Area Captured Number of wheels created

Image res Cutoff Prompt type True Positive False Positive Same as GT More than GT

350 px 50% Word 76.8% 8.0% 80.0% 6.7%

Phrase 77.0% 7.7% 73.3% 13.3%

60% Word 75.4% 6.9% 80.0% 6.7%

Phrase 76.0% 6.8% 86.7% 0.0%

75% Word 54.4% 3.8% 80.0% 0.0%

Phrase 60.4% 4.3% 73.3% 0.0%

700 px 50% Word 82.2% 10.5% 86.7% 0.0%

Phrase 82.1% 9.9% 80.0% 6.7%

60% Word 81.6% 8.9% 80.0% 6.7%

Phrase 81.6% 8.6% 86.7% 0.0%

75% Word 62.1% 5.9% 86.7% 0.0%

Phrase 68.4% 4.7% 86.7% 0.0%

1080 px 50% Word 83.4% 11.1% 73.3% 0.0%

Phrase 83.4% 9.5% 73.3% 6.7%

60% Word 82.8% 9.0% 73.3% 6.7%

Phrase 82.9% 8.6% 80.0% 6.7%

75% Word 55.7% 4.9% 80.0% 0.0%

Phrase 52.5% 3.1% 73.3% 0.0%
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